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ABSTRACT 
In this paper, we propose a two-pass encoding framework 
to handle the problem of sequence-level rate control. We 
consider the sequence-level encoding parameter constant 
rate factor (CRF) as the factor to be adjusted. The proposed 
framework mainly has two key contributions. First, we 
provide a second order model to characterize the 
relationship between the bitrate and CRF. The proposed 
second order model outperforms the traditional linear 
model significantly. Second, we adopt a shallow neural 
network to train the relationship between the content-
dependent features with the second-order model 
parameters. The proposed neural network is quite simple 
but able to estimate the model parameters accurately. We 
implement the proposed algorithm under tensorflow. 
Experimental results show that our proposed method 
obviously outperforms the state-of-the-art method. 

Index Terms— Machine learning, Rate control, 
constant rate factor, sequence-level, second order model, 
video coding 

1. INTRODUCTION 

Rate control is quite an effective coding tool to decrease 
the expense of encoding. It is capable of adjusting 
parameters to match the target bitrate to avoid multi-pass 
coding. Since we have a common sense that the 
quantization parameters (QP) have significant influences 
on the residue bitrate and distortion, the early researches 
always build a R-Q model between the bitrate R and QP or 
QStep [1] [2].  Since the R-Q model may be with quite 
complex forms, He et al. [3] later propose a rho-domain 
based rate control algorithm and build a linear relationship 
between bitrate and the percentage of non-zero coefficients 
after transform and quantization. However, as mentioned in 
[5], both models can only characterize the residue bitrate. 
Along with the fast development of coding standards 
especially the newest video coding standard High 
Efficiency Video Coding (HEVC) [4], the non-residue bits 
can no longer be ignored. Recently, Li et al. [5] propose 
that the lambda is the key factor to determine the bitrate 
and develop a R-lambda model based rate control 
algorithm.  

    All the previous researches can adjust encoding 
parameters from block to block or frame to frame so that 
the bitrate can be controlled in a very precise way. There 
are also some use cases where we need to deal with the 
sequence-level rate control problem, in which we can only 
adjust one sequence-level parameter, for example, the 
constant rate factor (CRF) [6], to achieve the target bitrate. 
A straightforward method of rate control on CRF is to 
apply multi-pass encoding scheme to approximate the 
target bitrate as much as possible. However, multi-pass 
encoding may lead to much more computational resources 
and encoding time. Therefore, our objective is to find a 
robust model to characterize the content-related 
relationship between the target bitrate and CRF. 
    One recent work [7] proposes a linear model between 
the bitrate and CRF to solve this problem. A shallow neural 
network is also provided to estimate the content-related 
linear model parameters and CRF. However, according to 
our analysis, the linear model is quite inaccurate to 
describe the relationship between the bitrate and CRF. 
Besides, as [7] tries to combine all the resolutions together, 
it makes the model even more inaccurate. As a result, the 
achieved target bitrate is far from satisfiable.   
    In this paper, we follow the approaches in [7] and 
propose a resolution-free two-pass sequence-level rate 
control scheme to significantly improve the bitrate 
accuracy. Our proposed framework mainly has two key 
contributions.  
• First, for each spatial resolution, we build a second 

order model between the bitrate and CRF. Compared 
with the linear model, the proposed second order 
model can increase the model accuracy significantly 
partially due to the second order model, and partially 
thanks that we build an independent model for each 
resolution. 

• Second, we establish a simple network structure to 
estimate the content-related second order model 
parameters accurately. Compare with [7], our network 
structure is not only with simpler structure but also 
with better accuracy. 

    This paper is organized as follows. In Section 2, we will 
introduce the overview of our proposed framework. Then 
in Section 3 and 4, the proposed second order model 
between bitrate and CRF, and the machine-learning based 



training process will be presented, respectively. After that, 
many experiments of each resolution will be performed to 
show the benefits brought by the proposed framework in 
Section 5. At last, we will conclude the whole paper in 
Section 6.  

2. THE PROPOSED FRAMEWORK 

In this section, we will introduce the overview of our 
proposed two-pass coding framework, as shown in Fig, 1. 
We intend to achieve the target bitrate that uses only two 
pass coding to derive the expected CRF for encoding. From 
Fig. 1, we can see that there are mainly three steps 
including the offline training process, first-pass encoding 
process, and second-pass encoding process. We obtain the 
network from offline training process and feed it in the 
first-pass coding to generate the content-dependent model 
parameters. The model parameters will then be used to 
calculate the CRF according to the target bitrate. 

 
Fig. 1. The framework of the proposed two-pass scheme 

3. THE PROPOSED SECOND ORDER MODEL 

In this section, we will deduce the second order content-
dependent model between the bitrate and CRF from the 
linear model.  

As shown in [3], there is a quite robust relationship 
between the bitrate R and the Lagrange Multiplier lambda, 

                       (1) 

where alpha and beta are the model parameters related to 
the video coding. In the meantime, there is also quite a 
good relationship between QP and lambda as follows [8].  

                       (2) 

where c and d are constant numbers. If we combine (1) and 
(2), we can obtain the following relationship between QP 
and ln(R), 

                  (3) 

Where  and  are content-related model 
parameters.  
    Besides the relationship shown in (3), the relationship 
between the QP and ln(R) in [7] is also a linear 
relationship, although it also takes the resolution into 
consideration in the model. Therefore, we first try to apply 
the linear model as shown in (3). We apply the linear 
model on the test sequences with different resolutions. We 
first many pairs of CRFs and bitrates from 10 to 42 and 
then use the linear model to fit the data. The average 
bitrate errors on 720 sequences with various contents and 
resolutions can be seen from Table 1. The bitrate error in 
Table 1 is calculated using the following equation. 

                  (3) 

Table 1 The average bitrate error using the linear model  

     error within 20% error within 10% 
270p 98% 87% 
480p 96% 80% 
720p 89% 62% 
1080p 82% 49% 
Avg. 91% 69% 

 
    From Table 1, we can see that the linear model can only 
achieve 91% and 69% of total samples within 20% and 
10% bitrate errors in average. A typical failure case of the 
linear model can be seen from Fig. 2. From Fig. 2, we can 
see that the fitted curve of our linear model does not match 
the actual dotted line. It seems the linear model is not good 
enough to make the model adaptable to a large range of 
CRFs. 

 
Fig. 2.  Linear model estimation between CRFs and bitrates 

    Therefore, we need to find a more robust relationship 
between the bitrate and CRF. Based on some experiences 
that the QP is with the second model with the bitrate if a 
wide variety of QPs are needed to cover. This phenomenon 
motivates us to try the second order model between the 
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CRF and ln(R). The second order model we used can be 
described as follows. 

       (4) 

where , , and c(v) are content-related model 
parameters. To test the performance of the second order 
model, we also test the proposed model on the same 720p 
sequences as we used for the linear model. The fitting 
results are shown in Table 2. 

Table 2 The average bitrate error using the linear model  

  error 
within 
20% 

Improve 
on linear 

model 

 error 
within 
10% 

Improve 
on linear 

model 
270p 100% 2% 99% 12% 
480p 100% 4% 99% 19% 
720p 99% 10% 97% 35% 
1080p 97% 15% 89% 40% 
Avg. 99% 8% 96% 27% 

 
    From Table 2, we can see that the second order model 
can achieve that 99% and 96% of the total samples are 
within 20% and 10% bitrate errors, respectively. It 
outperforms the linear model by 8% and 27% accordingly. 
This result obviously demonstrates the effectiveness of the 
proposed second order model. 

 
Fig. 3.  Fitting curves between CRFs and bitrates, testing 
second order model 

    We also fit the failure case of the linear model using the 
proposed second order model as shown in Fig. 3. As shown 
in Fig. 3, the determining coefficient are all as high as 0.99 
over all the resolutions. This can also partially explain the 
benefits of the proposed second order model. 

4. PROPOSED MACHINE-LEARNING BASED 
TRAINING PROCESS 

After determining the second order model, the remained 
problem is to estimate the content-related model 
parameters. In this work, we adopt a shallow network to 
estimate the model parameters. The proposed network 
structure is shown in Fig. 4. We derive 14 features from a 
specified CRF as input. The bitrate and CRF are also 
derived to fit the second order model to get the label. Only 
two-hidden layers are employed in our machine learning 
based model. The output will be the three parameters of the 
second order model.  

 
Fig. 4.  The structure of machine-learning based network 

  To make the proposed network structure more obvious, 
we list of all the derived 14 features as follows. 
• Average PSNR of each channel & only Y channel  
• Encoded Bitrate 
• Percentage of texture bits on I & P macroblocks (MB) 

relative to the total bits 
• Percentage of texture bits relative to total bits 
• Average number of bits for texture for each I & P 

MBs 
• Average number of bits for texture for each MBs 
• Percentage of I & P MB 
• Percentage of zero motion vector 
• Average of motion vector for P frames and B frames 
• Average MVD bits 
These features include both the frame level and MB level 
features to fully reflect the characteristic of the specified 
content.  
    We implement our network on TensorFlow with Python. 
First, after extracting the 14 features and the 3 labels from 
many training sequences, we do pre-process for them with 
MinMaxScaler package supported by Python on features 
and StandardScaler package on labels. The MinMaxScaler 
package is used to re-distribute the data to the range 
between 0 and 1, and the StandardScaler package is an 
operation to distribute data by subtracting the mean and 
dividing the standard variance. Then we feed groups of 
features after initialization in our 2 fully-connected layers 
network, with 100 neutrons and 50 neutrons on the first and 
the second layer. In the proposed network model, as the 
dimension of the input features is very low, the fully-
connected layers structure is suitable to characterize the 
purity feature extraction for the labels we expected. On 
both layers, the hyperbolic tangent algorithm (Tanh) is 
used as the motivation function. We set up our gradient 
descent optimizer with learning rate equal to 0.05 to train 
our network. The loss function used is the mean square 
error between the predicted model parameters and the 
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actual model parameters. After the whole network is 
trained, the network will then be used to generate the 
model parameters for each specified sequence. The CRF 
calculation and encoding process will be finished 
afterwards. 

5. EXPERIENTIAL RESULT 

We adopt totally 27,732 samples of 5 second sequences as 
our training dataset. These test samples are cut from over 
1000 2min test sequences with different video content to 
ensure the variety of the test sequences. In the meantime, 
another 4,787 samples with totally different contents are 
used as our test dataset to evaluate the performance of the 
network trained from the training samples. To fully test the 
performance of the proposed framework, we test the 
performance on 4 resolutions including 270p, 480p, 720p, 
and 1080p and different CRFs ranging from 10 to 42. 

During training process, we employ only one specific 
CRF setting on each resolution to obtain the network since 
we can only perform one pass coding to obtain the model 
parameters. However, in the test process, we need to adapt 
the model to all the CRFs for a specified sequence. All 
samples split into three sets, 80% of 27,372 as training set, 
the rest of 20% as validation set and another 4,787 as test 
samples. The detailed CRF selections are from a number of 
tests on various CRFs. We choose CRF settings shown the 
best performance from all the test CRFs from 10 to 42. For 
a specified resolution 480p, we show the changing of the 
bitrate errors from 20 to 30 as shown in Fig. 5. From Fig. 5, 
we can see that, there are not that many differences for all 
the CRFs for both the bitrate errors under 10% and 20%, 
we select the one which optimizes the average performance 
for the test samples.  

We compare the percentages of the test samples under 
20% and 10% bitrate errors of the proposed framework 
with the linear model. The detailed experimental results are 
shown in Table 3. From Table 3, we can see that the 
proposed algorithm can achieve about 90.9% and 72.3% of 
total samples within 20% and 10% bitrate errors, 
respectively. Compared with the linear model, the proposed 
algorithm can achieve about 4.7% and 13.4% more 
examples under 20% and 10% bitrate errors accordingly. 

For each specified resolution, we can see that the linear 
model can achieve slightly better performance compared 
with the second order model for the 270p case. Comparing 
the 270p resolution results in Table 1 and Table 2, we can 
see that the difference between the linear model and the 
second order model is relatively small compared with other 
resolutions. However, the linear model parameters are 
easier to estimate through the network. That is why the 
linear model achieves slightly better performance. For the 
other resolutions, the proposed framework provides much 
better results compared with the linear model. The higher 
the resolution, the better the performance. Especially, 

under the 1080p case, the proposed algorithm can achieve 
11.5% and 24.4% increase under 20% and 10% cases. 

 

Fig. 5 The changing of 20% and 10% average bitrate errors 
for the 480p test sequences 

Table 3. The performance of the proposed framework 
and its improvement over the linear model 

 error 
within 

20% 

Improve 
on linear  

model 

error 
within 

10% 

Improve 
on linear  

model 
270p 93.5% 95.0%(-1.5%) 72.9% 70.0%(-2.9%) 
480p 93.4% 91.7%(1.7%) 77.3% 66.4%(10.9%) 
720p 91.6% 84.5%(7.1%) 73.5% 52.4%(21.1%) 
1080p 85.2% 73.7%(11.5%) 65.2% 40.8%(24.4%) 
Avg. 90.9% 86.2%(4.7%) 72.3% 58.9%(13.4%) 

6. CONCLUSION AND FUTURE WORK 

In this paper, we provide a two-pass coding framework to 
solve the problem of sequence level rate control. In the 
framework, we first propose a second order model to model 
the relationship between the bitrate and constant rate 
factor. We also propose to use a simple network structure 
to estimate the model parameters accurately. The proposed 
algorithm is implemented under the tensorflow framework. 
The experimental results show that the proposed algorithm 
can achieve 4.7% and 13.4% more samples within 20% and 
10% bitrate errors, respectively. 
     In the future, we will further optimize the network by 
choosing some block or region-based features. Also, we 
can use some pixel information if the reconstructed videos 
can be used. Finally, under the block-based features, we 
will further try some convolution neural networks in the 
network structure. 
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